CSCI 210: Computer Architecture
Lecture 14: MIPS addressing

Stephen Checkoway
Oberlin College

Nov. 3, 2021
Slides from Cynthia Taylor

Announcements

* Problem Set due Friday

* Lab 3 due Sunday

e Office Hours Friday 13:30 — 14:30

Basic Question of Addressing

 How do we specify which data to operate on (or instruction to
jump to)?

 Complication:
— Instructions are 32 bits.

— Memory addresses are 32 bits.
— Datais in 32 bit words.

* Can never full specify address/data in a single instruction

Register Addressing

2. Register addressing

op|(rs|nt|rd|... functf Registers

I - Register

* Which register the data is in is specified in the instruction

e 32 registers =5 bits per register address

 Usedin add, jr, etc

Immediate Addressing

1. Immediate addressing

op| rs | rt Immediate

Data is a constant within instruction

There is no memory address/register, because we are just
writing the information in the instruction itself

16 bits, can specify numbers up to 21°-1 = 64 k

Used in addi, ori, etc

32-bit Constants

* Most constants are small

— 16-bit immediate is sufficient
* For the occasional 32-bit constant

e |uirt, constant

— Copies 16-bit constant to left 16 bits of rt
— Clears right 16 bits of rt to O

D

E.

Which of these will set St0 to OxFOFOFOFQ?

lui $to, OxFoOFe
addi $to, $to, OxFoFe

lui $to, OxFoOFe
ori $to, $to, OxFoFo

ori $to, $to, OxFoFo
lui $to, OxFoFe

. More than one of these will work

None of these will work

Aside: Loading and Storing Bytes

MIPS provides special instructions to move bytes
—1b $t0, 1($s3) # load byte from memory
—sb $t0, 6($s3) # store byte to memory

opcode rs rt 16 bit offset

2 What 8 bits get loaded and stored?

® load byte places the byte from memory in the rightmost 8 bits of the destination register

- Byte is sign extended, other bytes in register erased

® store byte takes the byte from the rightmost 8 bits of a register and writes it to a byte in
memory

- Other bytes in word of memory are left intact

Base + Offset Addressing

3. Base addressing

op|rs | n Address ‘ Memory
L : '

'
Register] <+> - - Halfword Word
4

|

* Problem: 16 bits is not enough to address every word in
memory

 Solution: Add the 16-bit offset to the 32-bit address within a
register (the base)

e Usedin lw, sw

Branch Instructions’ targets are

. usually within 2% instructions of the branch instruction
. always within 2% instructions of the branch instruction

. usually more than 21> instructions away from the branch
Instruction

PC-relative Addressing

4. PC-relative addressing

op] s | n Address Memory

| ‘ [
'

PC @—~ Word
1

! |

 Take 16 bit constant, shift left 2, add to value in PC
* Can access PC +/- 21/ bytes

* Used in beq, bne

Why do we shift left by two?

4. PC-relative addressing

j op X rs ‘ n ‘ Address Memory
‘ [<< 2
2 8

PC |)r— Word
:

. We use the last two bits of the PC instead

. We only branch to instructions that are multiples of 4 words away
from the current instruction

. Instructions are words and addresses specify bytes, so the last two
bits of the address will always be 00

. None of the above

Which PC value in PC-relative addressing?

Ox42000 slt $to, $t1, $t2
0x42004 beq $t0, $zero, target
0x42008 addi $s0, $s0, 1
Ox?P??? target: ori $s0, $s0, 1

If the beq instruction has an immediate field of 0x0572, what is the address
of the target ori instruction?

PCis the address of the following instruction
target address: 0x42004 + 4 + (0x0572 << 2)

Branching Far Away

* |f branch target is too far to encode with 16-bit offset,
assembler rewrites the code

. beq $toO, $tl, far away
becomes
bne $to, $tl, not equal
j far_ away

not equal:

Pseudo-direct Addressing

5. Pseudodirect addressing

op

Address

Memory

PC

'
@ |
i

Word

We have 26 bits of address in the instruction

Shift left by two

Concatenate first four bits of PC + 4 with address

Used in j, jal

Consider a jal instruction at address 0xC8001074 whose 26-bit
address field has the value 0x0000003. What is the address of
the instruction the jal will jump to?

. Ox00000003
0x0000000C
0xCO000003
. 0xC0000007
0xC000000C

mo O w P

Assembler directives

e |nstructions to the assembler

— .data / .text / .rodata / .bass are used to switch between global
(mutable) data, executable code, read-only data, and uninitialized
data in the output

— .word x allocates space for 4 bytes with value x
— .space n allocates n bytes of space
— .asciiz “string” writes a O-terminated string at that location

Arrays!

* How do we declare a 10-word array in our data section?

* Could do
.data
x1: .word O
X2 .word O
X3: .word O

x10: .word O

Declaring an Array

* |nstead, just declare a big chunk of memory

.data
arr: .space 40

.data
arr: .space 40

.text
1li st0, O
addi Stl, St0, 10
la $Ss0, arr
loop:
beq S$t0, $tl, end
What goes here?
addi S$tO0, $t0, 1
J loop
end:

D. More than one of the above

E. None of the above

inti;
for (i=0;i<10; i++){
arr[i] =1i;
}
SW St0, S$tl1($s0)
A
add $t2, $s0, s$tl
SW St0, 0(sSt2)
B
SW St0, 0(S$s0)
addi $s0, $s0, 4
C

But what if we don’t know how big the array will be
before runtime?

sbrk system call

$sp— 7FFf FFCpey —

l
T

Dynamic data

* Allocates memory on the

heap and returns its address
in SvO

$gp— 1000 8000,y Static data
1000 000004

Text

. pc— 0040 0000,y
* Amount of memory is “ Reserved

specified in bytes in $Sa0 :

System Calls

e Syscalls (when we need OS intervention)
— 1/0 (print/read stdout/file)
— Exit (terminate)
— Get system time
— Random values

System Calls Review

* How to use:
— Put syscall number into register SvO
— Load arguments into argument registers
— Issue syscall instruction
— Retrieve return values

* Example (print the integer in St0):
1i svO, 1

move sa0, $tO

syscall

System Call Codes

Sv0 code | Service Arguments
1 Print integer Sa0=integer to print
2 Print float Sf12=float to print
3 Print double Sf12=double to print
4 Print string SaO=address of string
5 Read integer SvO0 = read integer
6 Read float Sf0 = read float
7 Read double Sf0 = read double
8 Read string Sa0 = address of input
buffer, Sal = max
number of characters
9 Sbrk (allocate heap memory) | Sa0 = number of Sv0 = address
bytes
10 Exit (terminate program)

What about freeing memory?

Some operating systems maintain a

{4 ” . .
program break” which controls the size ., 766 ¢rec,

of the dynamic data S“IC"
sbrk requests the OS

increment/decrement the break T
malloc()/free() carve the dynamic data break > | by namic data
up into chunks which the application _

can use and maintain lists of free chunks *9p— 1888 gggghex Static data
Freeing memory adds the chunk to a e Toxt
“free list” pc— 0040 0000,

When more memory is needed, the 0 eserved

break is changed

Reading

* Next lecture: Digital logic

* Problem set 4: Due Friday

e Lab 3 due Sunday

