
CSCI 210: Computer Architecture

Lecture 14: MIPS addressing

Stephen Checkoway

Oberlin College

Nov. 3, 2021

Slides from Cynthia Taylor

Announcements

• Problem Set due Friday

• Lab 3 due Sunday

• Office Hours Friday 13:30 – 14:30

Basic Question of Addressing

• How do we specify which data to operate on (or instruction to
jump to)?

• Complication:

– Instructions are 32 bits.

– Memory addresses are 32 bits.

– Data is in 32 bit words.

• Can never full specify address/data in a single instruction

Register Addressing

• Which register the data is in is specified in the instruction

• 32 registers = 5 bits per register address

• Used in add, jr, etc

Immediate Addressing

• Data is a constant within instruction

• There is no memory address/register, because we are just
writing the information in the instruction itself

• 16 bits, can specify numbers up to 216-1 = 64 k

• Used in addi, ori, etc

32-bit Constants

• Most constants are small

– 16-bit immediate is sufficient

• For the occasional 32-bit constant

• lui rt, constant

– Copies 16-bit constant to left 16 bits of rt

– Clears right 16 bits of rt to 0

Which of these will set $t0 to 0xF0F0F0F0?

A.

B.

C.

D. More than one of these will work

E. None of these will work

lui $t0, 0xF0F0

addi $t0, $t0, 0xF0F0

lui $t0, 0xF0F0

ori $t0, $t0, 0xF0F0

ori $t0, $t0, 0xF0F0

lui $t0, 0xF0F0

Aside: Loading and Storing Bytes

• MIPS provides special instructions to move bytes
– lb $t0, 1($s3) # load byte from memory

– sb $t0, 6($s3) # store byte to memory

opcode rs rt 16 bit offset

q What 8 bits get loaded and stored?

● load byte places the byte from memory in the rightmost 8 bits of the destination register

- Byte is sign extended, other bytes in register erased

● store byte takes the byte from the rightmost 8 bits of a register and writes it to a byte in

memory

- Other bytes in word of memory are left intact

Base + Offset Addressing

• Problem: 16 bits is not enough to address every word in

memory

• Solution: Add the 16-bit offset to the 32-bit address within a

register (the base)

• Used in lw, sw

Branch Instructions’ targets are

A. usually within 215 instructions of the branch instruction

B. always within 215 instructions of the branch instruction

C. usually more than 215 instructions away from the branch

instruction

PC-relative Addressing

• Take 16 bit constant, shift left 2, add to value in PC

• Can access PC +/- 217 bytes

• Used in beq, bne

Why do we shift left by two?

A. We use the last two bits of the PC instead

B. We only branch to instructions that are multiples of 4 words away
from the current instruction

C. Instructions are words and addresses specify bytes, so the last two
bits of the address will always be 00

D. None of the above

<< 2

Which PC value in PC-relative addressing?

0x42000 slt $t0, $t1, $t2

0x42004 beq $t0, $zero, target

0x42008 addi $s0, $s0, 1

…

0x????? target: ori $s0, $s0, 1

If the beq instruction has an immediate field of 0x0572, what is the address
of the target ori instruction?

PC is the address of the following instruction

target address: 0x42004 + 4 + (0x0572 << 2)

Branching Far Away

• If branch target is too far to encode with 16-bit offset,

assembler rewrites the code

• beq $t0, $t1, far_away

becomes

bne $t0, $t1, not_equal

j far_away

not_equal:

Pseudo-direct Addressing

• We have 26 bits of address in the instruction

• Shift left by two

• Concatenate first four bits of PC + 4 with address

• Used in j, jal

Consider a jal instruction at address 0xC8001074 whose 26-bit

address field has the value 0x0000003. What is the address of

the instruction the jal will jump to?

A. 0x00000003

B. 0x0000000C

C. 0xC0000003

D. 0xC0000007

E. 0xC000000C

Assembler directives

• Instructions to the assembler

– .data / .text / .rodata / .bass are used to switch between global

(mutable) data, executable code, read-only data, and uninitialized

data in the output

– .word x allocates space for 4 bytes with value x

– .space n allocates n bytes of space

– .asciiz “string” writes a 0-terminated string at that location

Arrays!

• How do we declare a 10-word array in our data section?

• Could do
.data

x1: .word 0

x2: .word 0

x3: .word 0

...

x10: .word 0

Declaring an Array

• Instead, just declare a big chunk of memory

.data

arr: .space 40

int i;

for (i = 0; i < 10; i++){

arr[i] = i;

}

.data

arr: .space 40

.text

li $t0, 0

addi $t1, $t0, 10

la $s0, arr

loop:

beq $t0, $t1, end

What goes here?

addi $t0, $t0, 1

j loop

end:

sw $t0, $t1($s0)

sw $t0, 0($s0)

addi $s0, $s0, 4

add $t2, $s0, $t1

sw $t0, 0($t2)

A

B

C

D. More than one of the above

E. None of the above

But what if we don’t know how big the array will be

before runtime?

sbrk system call

• Allocates memory on the

heap and returns its address

in $v0

• Amount of memory is

specified in bytes in $a0

System Calls

• Syscalls (when we need OS intervention)

– I/O (print/read stdout/file)

– Exit (terminate)

– Get system time

– Random values

System Calls Review

• How to use:
– Put syscall number into register $v0

– Load arguments into argument registers

– Issue syscall instruction

– Retrieve return values

• Example (print the integer in $t0):

li $v0, 1

move $a0, $t0

syscall

System Call Codes

$v0 code Service Arguments

1 Print integer $a0=integer to print

2 Print float $f12=float to print

3 Print double $f12=double to print

4 Print string $a0=address of string

5 Read integer $v0 = read integer

6 Read float $f0 = read float

7 Read double $f0 = read double

8 Read string $a0 = address of input

buffer, $a1 = max

number of characters

9 Sbrk (allocate heap memory) $a0 = number of

bytes

$v0 = address

10 Exit (terminate program)

What about freeing memory?

• Some operating systems maintain a
“program break” which controls the size
of the dynamic data

• sbrk requests the OS
increment/decrement the break

• malloc()/free() carve the dynamic data
up into chunks which the application
can use and maintain lists of free chunks

• Freeing memory adds the chunk to a
“free list”

• When more memory is needed, the
break is changed

break →

Reading

• Next lecture: Digital logic

• Problem set 4: Due Friday

• Lab 3 due Sunday

